Probing dark sector with atomic clocks

Andrei Derevianko University of Nevada, Reno

Problem of dark matter/dark energy

Fundamental constants mask our ignorance

Fundamental constant is any parameter **not** determined by the theory in which it appears

- Standard model: 28 parameters (masses, α , \hbar , c,...)
- Cosmology: +12 parameters (e.g., Hubble)

SM: constants are constant BSM: constants become dynamical variables (fields) can vary in space and time

Reviews:

J.-P. Uzan, Living Rev. Relativ. 14, (2011) J.-P. Uzan, Comptes Rendus Phys. 16, 576 (2015)

What if dark matter and/or dark energy fields drive fundamental constants?

Slow drifts of fundamental constants

$$V_{\text{clock}}\left(\alpha, \frac{m_q}{\Lambda_{\text{QCD}}}, \frac{m_e}{m_p} \right)$$

$$\frac{\delta v(t)}{v_0} = \sum_{X = \text{fnd consts}} K_X \frac{\delta X(t)}{X} = K_\alpha \frac{\delta \alpha(t)}{\alpha} + \dots$$

Compare ratio of frequencies of two clocks with different sensitivities

Latest: Godun,...Gill, PRL 113, 210801 (2014); Huntemann,... Peik, PRL 113, 210802 (2014)

Variations of fundamental constants

Ultralight dark matter

What do we know about dark matter?

Dark Matter halo

Velocity distribution

Galactic orbital motion

$$v_g \sim 300 \,\mathrm{km/s}$$

Energy density $ho_{\rm DM} pprox 0.4 \, {\rm GeV/cm^3}$

Dark matter signatures and atomic clocks

Clocks monitor atomic transition frequencies

These depend on fundamental constants

Search for variation of fundamental constants that is consistent with DM models

Ultralight DM and atomic clocks

non-interacting fields

Oscillating variations of fund. const

Arvanitaki et al. PRD 91, 15015 (2015)

[Really stochastic]

self-interacting fields

Transient variations of fund. const

Derevianko & Pospelov, Nature Phys. 10, 933 (2014)

Dark matter transients

Dark matter signature

Monitor time difference b/w two spatially-separated clocks \Rightarrow persistent clock discrepancy for over time l/v_g

GPS aperture =50,000 km => $l/v_g \sim 150$ sec

Domain wall GPS sweep

GPS.DM collaboration: mining of ~20 years of archival data for atomic clocks onboard GPS satellites

Relevant parameters: coupling strength + average time b/w encounters + width of the object

GPS.DM discovery reach

Global networks of laboratory clocks

Laboratory clocks + GPS time-stamping

Wcisclo ... Zawada, Sci. Adv. 4, eaau4869 (2018)

au4869 (2018)

Roberts...Wolf, 1907.02661

Fiber linked clocks

Constraints for short times b/w encounters

Roberts...Wolf, 1907.02661

For T > \sim a month GPS.DM still is the only network with any constraints. + GPS clocks are microwave clocks

Common mistake (all papers)

- Multiple (!) encounters
- Poisson processes

Sensitivity ~
$$\sqrt{N_{\text{events}}} = \sqrt{\frac{\text{Total observation time}}{\text{time between encounters}}}$$

 $\, \bullet \,$ All published constraints on Λ need to be rescaled by

$$\left(\frac{\text{Total observation time}}{\text{time between encounters}}\right)^{1/4}$$

Panelli, Roberts, Derevianko, arXiv: 1908.03320

DM-induced oscillating/stochastic variation of fundamental constants

Virialized ultra-light fields (VULFs)

Example: S=0 fields, no self-interaction

- True scalars: dilatons/moduli
- Pseudo scalars: axions/ALPs

Single mode (fixed velocity)

$$\phi(t,\mathbf{r}) = \Phi_0 \cos\left(\omega_{\phi} t - \mathbf{k} \cdot \mathbf{r} + \theta\right)$$
$$\hbar\omega_{\phi} \approx mc^2 + \frac{1}{2}mv^2$$

Compton frequency

$$\rho_{\rm DM} = \frac{1}{2} \left(\frac{mc}{\hbar}\right)^2 \Phi_0^2$$

average over many oscillations

Andrei Derevianko - U. Nevada-Reno

Many modes \Rightarrow Stochastic field

$$\frac{\# \text{ of particles}}{\text{mode}} \sim \left(\frac{\rho_{\text{DM}}}{mc^2}\right) \times \left(\lambda_{\text{de Broglie}}\right)^3 \gg 1$$

 $m \ll 10 \,\mathrm{eV} \Rightarrow \mathrm{ultra-light} \,\mathrm{DM}$

$$\phi(t,\mathbf{r}) = \sum_{\text{modes}} \text{many waves with random phases}$$

 \Rightarrow Gaussian random fields (radiophysics, CMB, stochastic GW background,...)

Correlation time and length

Statistics is fully determined by 2-point correlation function

Stochastic approach: 2-point correlation function

$$\hbar\omega_{\phi} = \sqrt{\left(mc^2\right)^2 + \left(\frac{kc}{\hbar}\right)^2} \approx mc^2 + \frac{mv^2}{2}$$
 Dephasing

$$g(\tau,\mathbf{d}) = \langle \phi(t' = t + \tau,\mathbf{r} = \mathbf{r}' + \mathbf{d})\phi(t,\mathbf{r}) \rangle$$

Andrei Derevianko - U. Nevada-Reno

arXiv:1605.09717

Stochastic variation of fundamental constants

$$\frac{\langle \alpha(t',\mathbf{r}')\alpha(t,\mathbf{r})\rangle}{\alpha^2} = 1 + \hbar c \,\Gamma_{\alpha}^2 \,g(\tau,\mathbf{d})$$

arXiv:1605.09717

How does the DM field look like?

If the observation time \ll correlation time

$$\phi(t,\mathbf{r}) \approx \Phi_0 \cos(\omega_{\phi} t + \theta)$$

Unlucky experimentalist may encounter near-zero amplitudes

arXiv:1905.13650

Time scales

mass	oscillation period	correlation time
10 ⁻¹⁵ eV	~ 5 seconds	~10 days
10 ⁻²⁰ eV	~ 6 days	~ 2000 years

Uncertainty in the amplitude is an issue for $m \ll 10^{-14} \, {\rm eV}$

Need to marginalize over unknown amplitude

Posteriors for coupling strength γ

arXiv:1905.13650

Effect on exclusion plots

Previous bounds (microwave clocks)

A. Hees, J. Guena, M. Abgrall, S. Bize, and P. Wolf, PRL 117, 061301 (2016)

Previous bounds from:

Van Tilburg ... Budker, PRL 115, 011802 (2015) Hees...Wolf, PRL 117, 061301 (2016) Wcislo...Zawada, Science Advances 4, eaau4869 (2018)

Detecting dark-matter waves with a network of precision-measurement tools

Andrei Derevianko Department of Physics, University of Nevada, Reno, Nevada 89557, USA

Limits on the coupling strengths

All nodes within coherence length

$$\Gamma_X^{(\text{network})} < \Gamma_X^{(1)} / N^{1/2}$$

Incoherent limit

$$\Gamma_X^{(\text{network})} < \Gamma_X^{(1)} / N^{1/4}$$

Can ACES mission lead to further improvements in the search for DM?