The on-Orbit Accuracy Evaluation of PHARAO and its Implications for Clock Comparisons

- Most systematics will be evaluated during the commissioning of PHARAO, just as for ground clocks.
- 1st order Doppler shifts (DCP) & cold collision shift will take more than 1 year to realize its ultimate accuracy
 - BBR may also improve dramatically years from now.
 - BBR coefficient drops out of Cs-Cs comparisons
- Make & report measurements knowing that the uncertainties will likely improve significantly without any further frequency comparisons.
 - Frequency correction and the overall uncertainty are likely to change (not exactly blind measurements)
- Frequency instabilities of 2D extrapolations, versus launch velocity and density

PENNSTATE

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.7
Microwave Lensing	1.14	0.4
Ultracold collisions	+1	$3.8 \times 10^{-13} \tau^{-\frac{1}{2}}$
& Cavity Phase		-
Total		1.1

Kurt Gibble, Philippe Laurent, & Christophe Salomon Support from CNES, CNRS, ENS, ESA, First TF, NASA, LNE, SYRTE, Penn State, & UPMC

Expectations & Possibilities, with a Caveat

"It's tough to make predictions, especially about the future." -Danish Proverb (Karl Kristian Steincke & later Yogi Berra)

after 2 months of live time:

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.7
Microwave Lensing	1.14	0.4
Ultracold collisions	+1	1.66
& Cavity Phase		
Total		1.86

after 11 months of live time:

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.7
Microwave Lensing	1.14	0.4
Ultracold collisions	+1	0.7
& Cavity Phase		
Total		1.1

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.7
Microwave Lensing	1.14	0.4
Ultracold collisions	+1	$3.8 \times 10^{-13} \tau^{-1/2}$
& Cavity Phase		
Total		1.1

Cs-Cs comparison, 22 months??

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.1
Microwave Lensing	1.14	0.05
Ultracold collisions	+1	0.5
& Cavity Phase		
Total		0.58

Make & report measurements knowing that uncertainties will improve, even with no further comparisons.

(Also for future fountain measurements.)

Laurent, Esnaut, KG, Peterman, Lévèque, Delaroche, Grosjean, Moric ... Salomon (in prep.)

that give f_{corr} its smaller instability. f_{Op} doesn't improve $f_{00} \rightarrow$ uncertainty of f_{corr} must increase as f_{Op} uncertainty decreases.

Summary

Most systematics will be evaluated during the commissioning of PHARAO, just as for ground clocks.
1st order Doppler shifts (DCP) & cold collision shift will take more than 1 year to reach ultimate accuracy

BBR may also improve dramatically years from now.

Make & report measurements knowing that the uncertainties will likely improve significantly without

- any further frequency comparisons.
- Linear and quadratic DCP extrapolations vs. launch v.
- Combined collision shift & cavity phase extrapolation is a statistical error, with negligible systematic.
- Normal Operation will evaluate correction (and give a degraded clock stability)
- High Stability operation designed to meet 10⁻¹⁶ time transfer goals for 20 day quiet periods
- Reoptimize operation using first on-orbit data

KG, P. Laurent, & C. Salomon

Penn State, Obs. de Paris, CNES, & Ecole Normale Supérieure Support from CNES, CNRS, ENS, ESA, First TF, NASA, LNE, SYRTE, Penn State, & UPMC

PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.7
Microwave Lensing	1.14	0.4
Ultracold collisions	+1	$3.8 \times 10^{-13} \tau^{-1/2}$
& Cavity Phase		-
Total		1.1
PHARAO (10 ⁻¹⁶)	Shift	Uncertainty
Quadratic Zeeman	900	0.1
Blackbody radiation	-171.7	0.1
Blackbody radiation Microwave Lensing	-171.7 1.14	0.1 0.05
Blackbody radiation Microwave Lensing Ultracold collisions	-171.7 1.14 +1	0.1 0.05 0.5
Blackbody radiation Microwave Lensing Ultracold collisions & Cavity Phase	-171.7 1.14 +1	0.1 0.05 0.5
Blackbody radiation Microwave Lensing Ultracold collisions & Cavity Phase Total	<u>-171.7</u> 1.14 +1	0.1 0.05 0.5 0.58

