lisa pathfinder FIRST STEPS TO OBSERVING **GRAVITATIONAL WAVES FROM SPACE**

LISA Pathfinder and the route to LISA

Paul McNamara ACES workshop Paris, October 2019

ESA UNCLASSIFIED - For Official Use

Introduction

- LISA Pathfinder (LPF) is the first step in the observation of gravitational waves from space
- LPF launched on a VEGA launcher from Kourou on 3 December 2015
- Goal of mission: demonstrate free-fall within one order of magnitude of that required by LISA - Performance surpassed even our most
 - optimistic expectations!
- LPF essentially shrinks one arm of LISA from ~million km down to ~40cm
 - Gives up the sensitivity to gravitational waves
 - Maintains (and worsens) the instrument noise which could dominate the GW signal

ESA UNCLASSIFIED - For Official Use

ESA UNCLASSIFIED - For Official Use

LISA:

- 3 spacecraft, separated by ~million km

- Role of each spacecraft is to protect the fiducial test masses from external forces

ESA UNCLASSIFIED - For Official Use

LISA:

- Locally measure distance from TM to s/c using:
 - Laser interferometry along sensitive axis (between s/c)
 - Capacitive sensing on orthogonal axes

- TM displacement measurements are used as input to DFACS which controls position and attitude of s/c with respect to the TM

*

ESA UNCLASSIFIED - For Official Use

- Measure distance between s/c using laser

- Build TM-TM distance by combining:

```
(TM_1 \rightarrow s/c) + (s/c \rightarrow s/c) + (s/c \rightarrow TM_2)
```

ACES Workshop | 28-10-2019 | Slide 6

ESA UNCLASSIFIED - For Official Use

LISA Pathfinder:

- Two test masses/two inertial sensors
- Laser interferometric readout of $TM_1 \rightarrow s/c \& TM_1 \rightarrow TM_2$
- Capacitive readout of all 6dof of test masses
- Drag-Free and Attitude Control System
- Micro-Newton Thrusters

LPF and LISA

10^{-16} 10^{-17} 10^{-18} 10^{-19} 10^{-20} 10^{-21}	<section-header></section-header>	Mo e hour hour day balase hour	LIGO-type F GW150914 Galactic Bac Gal. Bin. (S Kerification ENDENA ENDENA 10 ⁵ Mo
10	-5 10 ⁻⁴	10 ⁻³ 1 Frequency (]	10^{-2} 10^{-1} Hz)

 10^{0}

*

-

Arm-length penalty

Shot oise +

8

LISA Pathfinder

LISA Pathfinder consists of:

- Spacecraft

- Provided by ESA
 - Industrial Prime Contractor: Airbus DS (UK)
- s/c also includes the drag free control software and micro-Newton thrusters

- Payloads

• The LISA Technology Package (LTP)

- Provided by European member states and ESA
- Consists of inertial sensors, interferometric readout, payload computer and diagnostic subsystem

• The Disturbance Reduction System (DRS)

- Provided by NASA/JPL
- Consists of processor running drag-free control software and micro-Newton thrusters

ESA UNCLASSIFIED - For Official Use

+

ACES Workshop | 28-10-2019 | Slide 9

*

A orbiting physics lab

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 11

Experiments Performed

(1)

ESA UNCLASSIFIED - For Official Use

- + 11

÷

Time in science mode

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 13

Differential Acceleration

The differential acceleration between the test masses (known as "delta-g") is the primary performance requirement of the mission...

...and was met during commissioning!

LTPDA 3.0.6.ops (R2015b

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 14

*

After 1 year on orbit...

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 15

*

Why so good?

Pre-launch requirement:1000pm/s²

ESA UNCLASSIFIED - For Official Use

2019 | Slide 16

Why so good?

Pre-launch requirement:1000pm/s²

European Space Agency

*

What we understand

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 17

Optical Metrology System

ESA UNCLASSIFIED - For Official Use

ACES Workshop | 28-10-2019 | Slide 18

*

Beam alignment (from ground to space)

- One major worry was OMS alignment change from ground to space
- Any distortion of the optical bench shows up as large misalignment due to lever arm of optical path on bench
- Optical bench alignment can be measured using the fixed interferometers
 - Reference ifo measurement beam is most sensitive to bench distortion

ESA UNCLASSIFIED - For Official Use

Alignment from ground to space

[um]			Flight	IABG	UGL	Flight - UGL	IABG - UGL	Flight - IABG		[um]			Flight	IABG	UGL	Flight - UGL	IABG - UGL	Flight - IABG
X 1		x	34	35				-1		X 1	_	x	12	18				-6
	A	у	-353	-343				-10			A	У	-3	-7				4
		x	13	13				0			В	x	-5	-4				-1
		У	-350	-336				-14				у	-9	-16				7
X12	A	x	80	84				-4			A	x	18	13				5
		У	-389	-400				11		¥10		У	-23	-23				0
	в	x	-74	-76				2		A12	в	x	8	11				-3
		У	-390	-394				4				у	16	16				0
XF	A	x	21	21	21	0	0	0		A XF B	A	x	26	19	21	5	-2	7
		У	-40	-35	-32	-8	-3	-5				У	-35	-35	-29	-6	-6	0
	в	x	13	9	6	7	3	4			в	x	7	11	8	-1	3	-4
		у	-25	-20	-15	-10	-5	-5				У	-19	-20	-13	-6	-7	1
XR	A	x	7	9	6	1	3	-2		XR	A	x	-8	-11	-13	5	2	3
		у	-29	-15	-6	-23	-9	-14				У	-10	-12	-6	-4	-6	2
	в	x	43	36	35	8	1	7			в	x	60	59	58	2	1	1
		у	70	79	83	-13	-4	-9				У	89	83	89	0	-6	6

ESA UNCLASSIFIED - For Official Use

Reference Beam

ACES Workshop | 28-10-2019 | Slide 20

*

Performance: On-Orbit results

ESA UNCLASSIF

Performance: On-Orbit results

Stability of performance

ESA UNCLASSIFIED - For Official Use

What about the satellite stability?

Platform Stability

By looking at the position of one test mass with respect to the optical bench (spacecraft), the only thing we measure is thruster noise!

ACES Workshop | 28-10-2019 | Slide 24

*

Platform Stability

Sy looking at the position of one test mass with respect to the optical bench (spacecraft), the only thing we measure is thruster noise!

Conclusions

LISA Pathfinder has been a great success

- Performance of both OMS and GRS have vastly exceeded requirements
- Success of LPF led to the early selection of LISA as the 3rd L-class mission in the Cosmic Vision Programme

- LISA Mission Consolidation Review (mid Phase A review) was closed last week

In addition, we have proven that fundamental physics missions are possible

Lessons learned from LPF are being directly transferred to the LISA development

Thank you

ESA ESTEC ESA ESAC ESA ESOC **Airbus Defence and Space UK Airbus Defence and Space D University of Trento Albert Einstein Institute** University of Glasgow **University of Birmingham Imperial College London ETH Zurich University of Zurich** Institut d-Estudis Espacials de Catalunya Universidad Politecnica de Barcelona **APC** Paris

