

LABORATOIRE NATIONAL DE MÉTROLOGIE ET D'ESSAIS

> Frequency dissemination and comparison through a fiber network

E. Cantin, M. Tonnes, F. Frank, E. Bookjans,

P. Tuckey, A. Amy-Klein, O. Lopez,

P.-E. Pottie

- Fiber *link* technology
- Fiber network, towards a Research Infrastructure (CLONETS)
- A clock network (OFTEN, ROCIT)
- The french fiber network (REFIMEVE+)

Fiber network: Motivations

N. Huntemann

and al.

PRL **I3** 21

210802, (2014)

C. Clivati et al..

Opt. Expr., **24**, 11

(2016)

SYRTE

bservatoire

Basics on fiber links

 $\checkmark\,$ Round-trip fiber propagation noise

- ✓ + Laser autocorrelation noise $\phi_{laser}(t) \phi_{laser}(t 2\tau)$
- Fully bi-directional. A 2nd link transfers back the signal.
- Unbalanced Michelson interferometer
- Heterodyne detection: eliminates mutlipath
- Guided propagation: ensure paths reciprocity
 - Assumption : Forward noise = 1/2 Round-trip noise
- → corrects only reciprocal noise
- **Coherent regime** if coherence length > 2L: need ultra-stable laser !

Typical performances

bservatoire

Systèmes de Référence Temps-Espaci

SYRTE

Challenges for long haul fiber links

- Fiber availability: money and partnership
- Attenuation: bi-directional amplification
- Accumulated noise: electronic, automatism, remote control
- Finite time of propagation: fundamental limit

Range of fiber links in Europe

- Extend the range of fiber links
- Improve maturity (Technical readiness level)

Fiber network ACES WS, October 28, 2019

Fiber links range (km)

PI : Philip Tuckey, SYRTE

Consortium of 16 partners : 1/3 academics, 1/3 Telecom Network, 1/3 Industrials

Expected outcomes :

- Review techniques and their evolutions, compatibility, needs for Research Infrastructures (NMIs, research labs, large research facilities as VLBI, accelerators...)
- Survey potential application outside
 Research Infrastructure, economic and societal impact
- Education and training
- Define a strategic roadmap for RI
 - Mid-term goal :
- Secured accessed to the fiber network
- Increase technical readiness level, offer « on the shelf » solutions and procedures to establish a fiber link

Project CLONETS involved 16 partners from 7 European countries. Partners represent 4 main areas:

- National Measurement Institutes: OBS PARIS (FR), NPL (UK), PTB (DE), INRIM (IT)
- National Research and Education Network: RENATER (FR), CESNET (CZ), PSNC (PL), GARR* (IT),
- Academic Laboratories: AGH (PL), UP13 (FR), UCL (UK), ISI (CZ), CNRS* (FR)
- Industrial: MUQUANS (FR), MENLO (DE), PIKTIME (PL), SEVEN SOL (SP), OPTOKON (CZ), TOP-IX* (IT)

An EU-backbone to be designed

Sustainability

Long-term fiber network access
 REFIMEVE is extended to 2024

Partnership with RENATER

LIFT

- Partnership GARR, TOPIX
- - Partnership with PSNC
- CESNET
- NPL and PTB rent the fiber

https://www.clonets.eu/

Networks interconnection

INRIM will be connected to NPL/SYRTE/PTB

- Paris-Grenoble (REFIMEVE, 900 km) :
- Grenoble-Modane (150km) :
 - Uni. Grenoble Alpes,
 +Région Auvergne-Rhones Alpes
- REFIMEVE + LIFT + PTB + NPL:
 - about 2 x 4 650 km
- Clock comparisons: Yb, Cs

A suitable place for chronometric geodesy ?

European fiber network (OFTEN)

European fiber network (OFTEN)

Optical clock comparisons

Optical clock comparisons

Absolute frequency difference without SI-Hz

Clock comparisons within OFTEN

See also : Test of Special Relativity Using a Fiber Network of Optical Clocks Delva, P. et al.. Physical Review Letters 118, 221102 (2017).

Clock comparisons within OFTEN

Ensemble of independent OC : roadmap for SI-s redefinition

Work on reliability, reproducibility

servatoire

Systèmes de Référence Temps-Espace

SYRTE

Software and automated processing

Clock comparisons within OFTEN

Systèmes de Référence Temps-Espace

Cs+Rb clocks comparison SYRTE-PTB

I.Guéna, J. et al. First international comparison of fountain primary frequency standards via a long distance optical fiber link. Metrologia 54, 348 (2017).

ACES WS, October 28, 2019

Systèmes de Référence Temps-Espace

Cs+Rb clocks comparison SYRTE-PTB

- Improved relativistic gravitational redshift corrections
- Excellent agreement between fountains
- Compare Masers at PTB and SYRTE
 - Maser can be used as pivot oscillator with satellite means
- Accommodate with an arbitrary network architecture

REFIMEVE+ : a network in a nutshell

A Large Research Infrastructure

Collaboration with RENATER

Signal in **parallel of data traffic**Sustainability

- Dedicated Fiber ≈ 200€ / km
- Fiber sharing : ≈ cost / IO
 - Supervision embedded in a

Network Operation Center

20 partner laboratories as users

 Network design : robustness, reliability, availability of the signal

• Knowledge transfer : **TRL = 8**

Syrlinks 😁

KEOPSYS

4000 km of fibers

Paris-Strasbourg-Paris link

27 days during Clocks Comparison

Xu, D. et al. IEEE TIM 1-6 (2019) doi:10.1109/TIM.2018.2886865.

End-to-end stability (1400 km)

WholeSet_June_Lambda.txt

E. Cantin et al., EFTF'18

Operation of a link / 19 months

Repeater laser station : pictures

Remote optical clock comparison ACES WS, October 28, 2019

Systèmes de Référence Temps-Espace

Industrial grade fiber links

Remote optical clock comparison ACES WS, October 28, 2019

Systèmes de Référence Temps-Espace

Industrial grade fiber links

Repeater laser stations on the shelf

RLS stock at MuQuans before deployment

The European picture today

Next steps:

- Connection OPTIME-LIFT-REFIMEVE
- Connection to NORDUNET/ (SURFNET)
 - Amsterdam, Copenhaguen, Goteborg, Onsala...
- Connection to ROA (Spain)

CLONETS - Courtesy Wojbor Bogacki

Take away messages

- Towards RI for a secured and long term access to the fiber
- Sustainable approach : partnership with NRENs, Spectral sharing / ITU#44

OFTEN :

- 4 comparisons, many improvements Clocks+Combs+Links
- Statistical uncertainty < 4e-17, for many of them <1e-17@2e4 s

- I 9 months of operation with 54.5% uptime
- 90% uptime for several months, up to 99.5% over 1 month

Integration into RENATER network.

Thank you for your attention !

>50 people

PTB

Sebastian Koke Gesine Grosche Erik Benkler Harald Schnatz

NPL

Jochen Kronjaeger Riley Ilieva

INRIM

Davide Calonico Cecilia Clivati

LPL Olivier Lopez Anne Amy Klein

SYRTE

Rodolphe Le Targat Jérome Lodewyck Frédéric Meynadier Philip Tuckey

MuQuans

Fabiola Guillou-Camargo Vincent Menoret Bruno Desruelle

<u>The young (linkers):</u> Alexander Kuhl Thomas Waterholter

> Etienne Cantin Dan Xu Eva Bookjans Florian Frank Mads Tonnes

Anna Tampellini

In memoriam Jocelyne Guéna

Crédits LKB http://www.lkb.upmc.fr/

