Recent advances and results of MWL FS and MWL GT verification and tests

W. SCHÄFER¹, T. Schwall¹, S. Liu¹
M.-P. Hess², J. Kehrer², A. Helm², M.-J. Ettori²
L. Cacciapuoti³, R. Much³

¹ TimeTech GmbH, Stuttgart, Germany
² Airbus Space and Defence, Friedrichshafen, Germany
³ ESA-ESTEC, Noordvijk, The Netherlands

wolfgang.schaefer@timetech.de

This work is performed under ESA contract 16242/02/NL/JS
Outline

- Activities with RF EGSE
 - Updates, connections, calibrations…
- GT Activities and Tests
 - TWO GT assembled, connections, tests, some selected results
- FS Verification and Tests
 - AM / PM calibrations
 - Dynamic PLL response & Bump calibration
 - RF Sensitivity (tests ongoing)
 - RF Interference Test (tests ongoing)
 - Dynamic Doppler verification, to come
Recent advances and results of MWL FS and MWL GT verification and test.

RF EGSE Activities

Simultaneous Multiple connections
1. Pair FM <-> GT #3
2. Pair EM <-> GT #2

Cables firmly installed
Well-defined interfaces at boxes

Calibration & Verification
- RF signal amplitudes
- Frequency and range settings
- AM/PM characterisation

Reproducible and long-term stable signals

Recent advances and results of MWL FS and MWL GT verification and test.
EM set-up and connections, ELT mockup

- EM serves as representative test-bed, for any HW, SW and FW tests and verifications
- Various break-out boxes and extenders for simplified module access
- It is paired with the GT development and test stand, for GT design and verification.
- Connected to RF-EGSE for non-zero Doppler tests
GT #2 in test environment

- One Ku-Transmitter
- Two Ku-Receiver Channels
- One S-Receiver Channel
- S-Band delay monitor (loop)

- Ku-Loop is closed externally at the antenna
Calibrate for AM/PM
“NO” AM/PM in receivers

- Earlier attempts poor, severely limited by instrumentation

- New: Use AM/PM-free attenuators
 - Ku-Band (TESAT): Rotary-Vane WG attenuator (used for TWT AM/PM tests)
 - S-Band: Evanescent-mode attenuator

- Observation: “Receivers exhibit virtually NO AM/PM“ for carrier phase (why? see block diagramme below…)

- Calibrate RF-EGSE for AM/PM using MWL receivers together with these attenuators

- Result:
 RF-EGSE is calibrated wrt AM/PM, for code and carrier

Impressive:
Delay does not change, despite physical length is changing
“Divider problem”, phase continuity solved

- A “Divider problem” has been identified during last end-to-end test (E-2-E)
- DLL ON/OFF was necessary to recover from possible SEU effects
- Problem solved using DLL-FPGA reload without module switching (requiring a small SW & FW change)

As result:
- NO module-switching required any more during nominal operations
- All RF synthesisers & dividers run continuously, incl Test-loop carrier oscillator
- Full phase continuity is ensured, for code and carrier, during a full operation period
Ongoing Tests:
Example: RF Interference Test

- On-Going verification tests, example: CDMA interference test
- Script-based
- Automatic data recording, semi automated test evaluation, ongoing
Ongoing Tests:
RF Sensitivity & Interference

- RF test levels have changed since last E-2-E test to better account for unfavorable locations (i.e. Tokyo) and rain
 - Requirement
 - Acquisition: starting at 5° up to 10°
 - Tracking above 10° (no carrier cycle slips)
- Rx receiver lock-in sensitivity has been increased by 8 dB since E2E, which does not change noise levels!
- Lock-in algorithm and lock detector performance required changes to FW and SW, FPGAs
- New tests ongoing to adapt to the new situation
- Preliminary results promising
- Caution:
 - published results are taken under different configurations
 - new set of data being acquired
FM RF Sensitivity
very preliminary ongoing

FM Code sensitivity approaching – 123 dBm

Test:
15 acquisitions at each RF signal level
Then change range and amplitude

Recent advances and results of MWL FS and MWL GT verification and test.
Recent advances and results of MWL FS and MWL GT verification and test.

FM Phase continuity vs RF EGSE under realistic Doppler conditions

January 2019

Recent advances and results of MWL FS and MWL GT verification and test.

FM Code – minus - Carrier, reproducible between lockins

Frequency vs. Time

- **Data Source:** FS-CAL Dop
- **Average:** No Averaging
- **Averaged Samples:** None
- **Min Value:** -353.9964 Hz
- **Max Value:** 313.9988 Hz
- **Average:** 43.099 Hz
- **Std Dev:** 263.4981 Hz
- **Data Length(s):** 419
- **Peak To Peak:** 624 6799 Hz
- **2 Sigma:** 526.9574 Hz
- **Scale:** 0.0094 Hz/s

Phase vs. Time

- **Data Source:** FS-C02 Abs
- **Data Source B:** FS-082 Par1
- **Data Source C:** FS-572 Par1
- **Data Source D:** FS-CA2 Ins
- **Averaged Samples:** No Averaging
- **Min Value:** -629.3202 ps
- **Max Value:** 578.3388 ps
- **Average:** -34.159 ps
- **Std Dev:** 125.8696 ps
- **Data Length(s):** 11996
- **Peak To Peak:** 1207.640 ps
- **2 Sigma:** 251.3368 ps
- **Scale:** 500 ps / div
FM to RF EGSE stability signal -105 dBm, max amplitude

Recent advances and results of MWL FS and MWL GT verification and test.

Achieve carrier cycle identification within 10..20 s, at high amplitude

TDEV: Code Phase
10E-12 @ 10 s

TDEV: Carrier Phase
9E-14 @ 10 s
Thermal stability, code phase

Recent advances and results of MWL FS and MWL GT verification and test.
Thermal stability, carrier phase

Carrier Phase
Temperature: 3 Kpp

TDEV: Carrier Phase degraded

Code

Carrier
GT #3 Stability using TLT
System Overview, telemetry

Recent advances and results of MWL FS and MWL GT verification and test.
Recent advances and results of MWL FS and MWL GT verification and test.
FM to GT2 Doppler Test
“long cables” 150 ns el. Length
de-synchronisation

Doppler shape, code and
carrier

Recent advances and results of MWL FS and MWL GT verification and test.

Code minus carrier after code ambiguity removal and carrier cycle identification
Shall be straight line

2-way carrier phase:
De-Synchronisation due to
• Short cables to FM
• Long cables to GT2
FM to GT2 2-way Test
TestDLL Bump due to relative acceleration

Solution:
Calibrate for bump in non-dispersive conditions,
i.e. on ground
Using code minus carrier, see slide 11
Wanted signal: low, -119 dBm
Interfering signal: high, -97 dBm
Difference: 22 dB

Minor interference effect only for long tau within measurement uncertainty
Summary & Conclusions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Phase Continuity</td>
<td>OK, full ops period</td>
</tr>
<tr>
<td>2. AM/PM</td>
<td>OK, negligible</td>
</tr>
<tr>
<td>3. Code Dynamics (PLL bump)</td>
<td>OK, to be calibrated</td>
</tr>
<tr>
<td>4. Signal delay, carrier</td>
<td>understood</td>
</tr>
<tr>
<td>5. Signal delay, code</td>
<td>understood</td>
</tr>
<tr>
<td>6. RF sensitivity</td>
<td>ongoing (OK \text{ prelim})</td>
</tr>
<tr>
<td>7. CDMA interference</td>
<td>ongoing (OK \text{ prelim})</td>
</tr>
<tr>
<td>8. Internal EMC/EMV</td>
<td>ongoing (OK \text{ prelim})</td>
</tr>
<tr>
<td>9. GT shows matching performance</td>
<td></td>
</tr>
</tbody>
</table>
Further Tests related to performance excerpt

1. Realistic GS Szenario (FS with RF EGSE), formerly E-2-E test
 - „Full set“ of GS active, GS handover test
 - Full Doppler & Range simulation
 - Verify scaling (equal phase-time on all measurements)
 • Essential to determine ionosphere
 - Doppler stress test (15% higher than expected maximum)

2. Two-Clock Test (FS vs GT)
 - Realistic clock drifts, absolute scaling
 - unambiguous time transfer after interruptions

3. ELT-Operations

4. Signal delays (see Luigi‘s talk)
 - Very much reduced effort, based on instrument‘s own measurements
 - More accurate, because signal detectors are always the ones used in operations.