Recent advances and results of MWL FS and MWL GT verification and tests

W. SCHÄFER¹, T. Schwall¹, S. Liu¹

M.-P. Hess², J. Kehrer², A. Helm², M.-J. Ettori²

L. Cacciapuoti³, R. Much³

¹ TimeTech GmbH, Stuttgart, Germany
 ² Airbus Space and Defence, Friedrichshafen, Germany
 ³ ESA-ESTEC, Noordvijk, The Netherlands

wolfgang.schaefer@timetech.de

Outline

- Activities with RF EGSE
 - Updates, connections, calibrations...
- GT Activities and Tests
 - TWO GT assembled, connections, tests, some selected results
- FS Verification and Tests
 - AM / PM calibrations
 - Dynamic PLL response & Bump calibration
 - RF Sensitivity (tests ongoing)
 - RF Interference Test (tests ongoing)
 - Dynamic Doppler verification, to come

RF EGSE Activities

GT #3

Direct Link, zero Doppler, FM & GT #3

FM

Ku&S Downlink

RF EGSE

Ku-Uplink

Doppler Generator

Ku-Uplink

EM

Direct Link, zero Doppler, EM & GT #2

Simultaneous Multiple connections

- Pair FM <-> GT #3
- 2. Pair EM <-> GT #2

Cables firmly installed Well-defined interfaces at boxes

Calibration & Verification

- RF signal amplitudes
- Frequency and range settings
- AM/PM characterisation

Reproducible and longterm stable signals

EM set-up and connections, ELT mockup

- EM serves as representative test-bed, for any HW, SW and FW tests and verifications
- Various break-out boxes and extenders for simplified module access
- It is paired with the GT development and test stand, for GT design and verification.
- Connected to RF-EGSE for non-zero Doppler tests

GT Manufacturing & Verification

GT #2 in test environment

- One Ku-Transmitter
- Two Ku-Receiver Channels
- One S-Receiver Channel
- S-Band delay monitor (loop)
- Ku-Loop is closed externally at the antenna

EM S-Band level

EM Ku-Band level

EGSE level S&Ku

GT vs EGSE S-selection

Ku-RF combiner Antenna simulator Test-Loop

GT #2, fully assembled

Calibrate for AM/PM "NO" AM/PM in receivers

- Earlier attempts poor, severely limited by instrumentation
- New: Use AM/PM-free attenuators
 - Ku-Band (TESAT): Rotary-Vane WG attenuator (used for TWT AM/PM tests)
 - S-Band: Evanescent-mode attenuator
- Observation: "Receivers exhibit virtually NO AM/PM" for carrier phase (why? see block diagramme below…)
- Calibrate RF-EGSE for AM/PM using MWL receivers together with these attenuators
- Result:
 RF-EGSE is calibrated wrt AM/PM, for code and carrier

Ku-Band: rotary vane attenuator (Mfg Flann)

S-Band: Evanescent-mode attenuator, Mfg Spinner

Impressive:

Delay does not change, despite physical length is changing

cation and test.

"Divider problem", phase continuity solved

- A "Divider problem" has been identified during last end-to-end test (E-2-E)
- DLL ON/OFF was necessary to recover from possible SEU effects
- Problem solved using DLL-FPGA reload without module switching (requiring a small SW & FW change)

As result:

- NO module-switching required any more during nominal operations
- All RF synthesisers & dividers run continuously, incl Test-loop carrier oscillator
- Full phase continuity is ensured, for code and carrier, during a full operation period

Ongoing Tests: Example: RF Intereference Test

- On-Going verification tests, example: CDMA interference test
- Script-based
- · Automatic data recording, semi automated test evaluation, ongoing

Ongoing Tests: RF Sensitivity & Intereference

- RF test levels have changed since last
 E-2-E test to better account for unfavorable locations (i.e. Tokyo) and rain
 - Requirement
 - Acquisition: starting at 5° up to 10°
 - Tracking above 10° (no carrier cycle slips)
- Rx receiver lock-in sensitivity has been increased by 8 dB since E2E, which does not change noise levels!
- Lock-in algorithm and lock detector performance required changes to FW and SW, FPGAs
- New tests ongoing to adapt to the new situation
- Preliminary results promising
- Caution:
 - published results are taken under different configurations
 - new set of data being acquired

very preliminary ongoing

FM Code sensitivity approaching – 123 dBm

Test:

15 acquisitions at each RF signal level Then change range and amplitude

FM Phase continuity vs RF EGSE under realistic Doppler conditions January 2019

Blue: Doppler Red: Amplitude

Phase vs. Tin	пе
2019/01/20 00:00 -	01/20 04:26
Data Source A:	FS-CO2.Abs
Data Source B:	FS-OB2.Par1
Data Source C:	FS-ST2.Par1
Data Source D:	FS-CA2.Ins
No Averaging	
Averaged Samples:	None
Min Value:	-629.302ps
Max Value:	578.338ps
Average:	-34.159ps
Std.Dev:	125.669ps
Data Length[s]:	15998
Peak-To-Peak:	1207.640ps
2-Sigma:	251.338ps
Scale:	500ps/div

FM Code – minus - Carrier, reproducible between lockins

FM to RF EGSE stability signal -105 dBm, max amplitude

TDEV: Code Phase 10E-12 @ 10 s

Time D	Deviation vs. Tau	
2018/12/0	03 16:00 - 12/03 17:29	
Data Sou	rce: FS-C03.Abs	
No Avera	ging	
Noise:	Flicker PM	
2s	3.94E-11	
4s	2.48E-11	
8s	1.76E-11	
16s	1.25E-11	
40s	7.24E-12	
80s	5.12E-12	
160s	4.02E-12	
400s	2.75E-12	
800s	1.11E-12	

Achieve carrier cycle identification within 10..20 s, at high amplitude

TDEV: Carrier Phase 9E-14 @ 10 s

Thermal stability, code phase

Code Phase Temperature: 3 Kpp

Data Sour	ce: FS-CO1.Abs	
Averaged	2s	
Noise:	White PM	
2s	9.22E-12	
45	6.53E-12	
10s	4.08E-12	
20s	2.79E-12	
40s	1.94E-12	
100s	1.35E-12	
200s	1.22E-12	
400s	2.00E-12	
1000s	8.60E-12	
2000s	2.02E-11	
4000s	5.30E-12	
10000s	1.46E-12	

Long-term stability degraded

Derive corrective parameters

Thermal stability, carrier phase

Carrier Phase Temperature: 3 Kpp

Time Deviation vs. Tau 2018/12/01 10:00 - 12/02 05:59		
Data Sour	ce: FS-CA1.Ins	
Averaged 2s		
Noise:	Flicker PM	
2s	8.75E-14	
4s	7.26E-14	
10s	6.31E-14	
20s	5.93E-14	
40s	5.90E-14	
100s	6.09E-14	
200s	6.26E-14	
400s	7.19E-14	
1000s	1.33E-13	
2000s	2.69E-13	
4000s	1.07E-13	
10000s	1.11E-13	

TDEV: Carrier Phase degraded

Phase vs. Temperature
+9500176 5138 - 0105 0031
Usas Source FFS-CA1 Ins

FFS-CA1 In

Carrier

IWG Paris, 2019-10-28

GT #3 Stability using TLT System Overview, telemetry

GT #3 Stability using TLT Code and Carrier Phase, high amplitude, -101 dBm

Time D	eviation vs. Tau
2018/11/1	5 00:00 - 11/15 05:59
Data Sou	ce: GT-GTCO1.Abs
No Average	ıjing
Noise:	White PM
2s	4.97E-12
4s	3.11E-12
8s	2.20E-12
16s	1.56E-12
40s	1.02E-12
80s	8.17E-13
160s	8.86E-13
400s	3.78E-13
800s	3.60E-13
1600s	3.23E-13
4000s	4.91E-13

TDEV: Code Phase 1E12 @ 100 s

Time D	eviation vs. Tau	
2018/11/1	5 00:00 - 11/15 05:59	
Data Sour	rce: GT-GTCA1.Ins	
No Average	ging	
Noise:	White PM	
2s	1.14E-13	
4s	8.23E-14	
8s	6.87E-14	
16s	6.21E-14	
40s	5.82E-14	
80s	6.21E-14	
160s	6.58E-14	
400s	6.69E-14	
800s	7.08E-14	
1600s	5.50E-14	
4000s	3.06E-14	

TDEV: Carrier Phase 6.5E-14 @ 160 s

FM to GT2 Doppler Test "long cables" 150 ns el. Length de-synchronisation

Doppler shape, code and

Code minus carrier after code ambiguity removal and carrier cycle identification Shall be straight line

2-way carrier phase: **De-Synchronisation** due to

- Short cables to FM
- Long cables to GT2

2-Sigma:

10:40

09:52

10:08

Date & Time

10:24

09:36

DataAnalyzer v3.4 © TimeTech GmbH 2011

FM to GT2 2-way Test **TestDLL Bump due to relative** acceleration

Code phase vs Doppler Rate **Ku-Band**

Code phase vs Doppler Rate S-Band

Solution:

Calibrate for bump in non-dispersive conditions, i.e. on ground

Using code minus carrier, see slide 11

CDMA and Interference Test using EM (new link budget)

Time D	Deviation vs. Tau	
2019/05/2	20 14:30 - 05/20 14:40	
Data Sou	rce: FS-CO4.Abs	
No Avera	ging	
Noise:	White PM	
2s	3.44E-11	
4s	2.04E-11	
8s	1.21E-11	
16s	1.02E-11	
40s	6.74E-12	
80s	4.68E-12	

Wanted signal: low, -119 dBm

Interfering signal: high, -97 dBm

Difference: 22 dB

Minor interference effect only for long tau within measurement uncertainty

1. Phase Continuity

OK, full ops period

2. AM/PM

- OK, negligible
- 3. Code Dynamics (PLL bump) OK, to be calibrated
- 4. Signal delay, carrier understood
- 5. Signal delay, code understood
- 6. RF sensitivity ongoing (OK prelim)
- 7. CDMA interference ongoing (OK prelim)
- 8. Internal EMC/EMV ongoing (OK prelim)
- 9. GT shows matching performance

- Realistic GS Szenario (FS with RF EGSE), formerly E-2-E test 1.
 - "Full set" of GS active, GS handover test
 - Full Doppler & Range simulation
 - Verify scaling (equal phase-time on all measurements)
 - Essential to determine ionosphere
 - Doppler stress test (15% higher than expected maximum)
- Two-Clock Test (FS vs GT)
 - Realistic clock drifts, absolute scaling
 - unambiguous time transfer after interruptions
- **ELT-Operations** 3.
- Signal delays (see Luigi's talk)
 - Very much reduced effort, based on instrument's own measurements
 - More accurate, because signal detectors are always the ones used in operations.