

ELT Data Processing – about Noise, Calibration Capability and Synergies

Anja Schlicht, Christoph Bamann, Stefan Marz, Ulrich Schreiber

Technical University Munich

Ivan Prochazka

Technical University Prague

ELT Data Processing – about Noise, Calibration Capability and Synergies

- 1. European Laser Timing: Measurement principle and data analysis
- 2. Complications I: due to ISS
- 3. Complications II: Complexity of the measurement on ground
- 4. Comparison: ELT versus MWL
- 5. Synergies: ELT and microwave techniques

Measurement principle

Optical link, pulsed

Measurement principle

Principle of ELT (optical link, pulsed)

- One way:

$$tof_{1W} = R_{COM} + \tau_{troposphere} + \tau_{Sagnac} + \tau_{Shapiro} + \tau_{attitudeDetector}$$

- Round trip:

$$tof_{2W} = 2 * \left(R_{CoM} + \tau_{troposphere} + \tau_{Shapiro} + \tau_{attitudeReflector} \right) + \tau_{Reflector}$$

with R_{COM} : Distance between spacecraft CoM and station reference point

Time transfer:

-

$$\tau = \frac{t_{return} + t_{start}}{2} - t_{detector} + \tau_{corr} = \frac{t_{of_{2W}}}{2} + t_{start} - t_{detector} + \tau_{corr}$$

Round-trip measurements

5

One-way measurements

Histogram of filtered residuals according to 2.2σ (00)

Time transfer

Station to ACES time offsets (00)

Multireflector problem

Name	X [m]	Y [m]	Z [m]
JEM LRR Hemi A	10.878	-5.448	7.021
JEM LRR Hemi B	10.876	-6.092	7.017
IDA 1 Hemi B (a)	15.789	0.891	6.239
C2V2 S3 Forward Antenna Boom Hemi (c)	1.524	22.887	-1.417
C2V2 P3 Nadir Antenna Boom Hemi (c)	-2.621	-22.887	-0.978

Multireflector problem

For reflectors $i = 0 \dots N$ with distances $d_i \le d_{i+1}$ with respect to the observer the probability of detecting a signal is:

$$p_{i,eff} = p_i \prod_{j=0}^{i-1} (1-p_j)$$

The single-reflector probabilities p_i may account for differences in the effective cross section among the reflectors.

With a constant background noise rate, the noise statistics follows an exponential distribution in single photon mode:

$$p_{signal.i} = p_{eff,i} e^{-n_{noise}\Delta t_i}$$

Detector identification

Complexity of ELT for ground stations

ACES clock prediction

New noise reduction algorithm

$$P_{s>thr} = \sum_{m=N_t}^{\infty} p_{binomial,n+s}(m) \qquad P_{n+s}(T_x) = 1 - \exp\left[-(n_n T_x + N_s)\right]$$

$$p_{binomial,n+s}(m) = \frac{y!}{m!(y-m)!} P_{n+s}(T_x)^m (1 - P_{n+s}(T_x))^{y-m}$$

$$P_{n>thr} = \sum_{m=N_t}^{\infty} p_{binomial,n}(m) \qquad P_n(T_x) = 1 - \exp\left[-n_n T_x\right]$$

$$p_{binomial,n}(m) = \frac{y!}{m!(y-m)!} P_n(T_x)^m (1 - P_n(T_x))^{y-m}$$

New noise reduction algorithm

Simulation capability

Geometric components

- ISS attitude simulation
 (3 axes, constant offsets and oscillations)
- Detector and multi reflector positions
- Intra-reflector delay (function of incidence angle)
- Visibility constraints (minimum elevation, clouds) -
- Tidal motion and atmospheric loading

Stochastic components

- Background noise
- Laser Jitter
- Pulse width
- Clock noise and offsets
- (Fluctuations in the troposphere)

Clock simulation

Ground segment

Comparison with MWL

MWL:

Optical -> calibration -> 50 ps accuracy no wet tropospheric delay Time tagging of events -> jitter per detection pulse length 10 ps / 1 kHz -> 4 ps @ 300s 7ps @ 1 d Microwave -> no calibration -> 100 ps accuracy wet tropospheric delay Phase locked loop -> jitter per contact 100 Mchip/s / 14 GHz -> 230 fs @ 300s 8 ps @ 1 d

Calibration

Calibration of MWL

- ⇒ Calibration of MWL for time transfer and ranging
- \Rightarrow Troposphere
- \Rightarrow Short arc orbit adjustment
- \Rightarrow Systematic effects
- ⇒ Try a common parameter estimation and compare to time transfer in Lambda configuration

ПΠ

Calibration of GNSS links

٦Ш

- \Rightarrow Calibration of GNSS receiver
- \Rightarrow T2L2 only in common-view
- \Rightarrow ELT now also in non-common-view

ELT Data Center delivers the following products:

Space to ground clock comparison

Ground to ground clock comparison in common-view

Ground to ground clock comparison in non-common-view

MWL calibration