New test of Lorentz invariance using the MICROSCOPE space mission

Hélène Pihan-Le Bars¹, Christine Guerlin^{1,2}, Aurélien Hees¹, Romain Peaucelle^{1,5}, Jay Tasson⁴,
 Quentin Bailey³, Geoffrey Mo⁴, Pacôme Delva¹, Frédéric Meynadier^{1,6}, Pierre Touboul⁷, Gilles
 Métris⁸, Manuel Rodrigues⁷, Joël Bergé⁷, and <u>Peter Wolf¹</u>

ACES workshop, Paris, Oct. 28-29, 2019

¹ SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, France

- ² LKB, ENS, Université PSL, CNRS, Sorbonne Université, Collège de France, France
- ³ Department of Physics and Astronomy, Embry-Riddle Aeronautical University, Arizona, USA
- ⁴ Department of Physics and Astronomy, Carleton College, Minnesota, USA
- ⁵ Ecole Supérieure des Techniques Aéronautiques et de Construction Automobile (ESTACA), France
- ⁶ Bureau International des Poids et Mesures, France
- ⁷ DPHY, ONERA, Université Paris Saclay, France
- ⁸ Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, France

[Phys. Rev. Lett., accepted, Oct. 2019]

Menu

- Introduction
- The Lorentz Violating SME
- The SME signal in the Microscope data
- Analysis Method
- Data
- Comparison to independent analysis
- Final Results
- Conclusion

Introduction

- Analysis of the MICROSCOPE data have so far been restricted to "standard WEP" models, i.e. a possible differential acceleration of test masses along the local gradient of the Newtonian potential **g**.
- The Lorentz violating Standard Model Extension (SME) developed since the late 1990s by Kostelecky and co-workers leads to a different, richer, phenomenology.
- It allows for additional modulations of the signal, related to background fields in an inertial frame (SCF)

Systèmes de Référence Temps-Espace

The Lorentz Violating SME

What is SME?

- Effective field theory built from SM fields & in curved spacetime
- General framework describing low-energy effects of a spontaneous LV occurring at Planck scale

Main features

- Includes all possible observer-independent LV built from SM fields and background coefficients in the Lagrangian
- These coefficients vanish if the symmetry is preserved
- LV terms are expected to be strongly suppressed compared with non violating terms
- Phenomenological, not quantitatively predictive
- Enables the derivation of experimental observables

[Kostelecky et al., PRD 51, 1995], [Kostelecky et al., PRD 58, 1998]

The SME signal in the MICROSCOPE data

Systèmes de Référence Temps-Espace

The SME signal in the MICROSCOPE data

$$\begin{split} \gamma_{\hat{x}} &= b + \ \mathbf{S}_{\hat{x}\hat{x}} \Delta_{\hat{x}} + (\mathbf{S}_{\hat{x}\hat{y}} + \dot{\Omega}_{z}) \Delta_{\hat{y}} + (\mathbf{S}_{\hat{x}\hat{z}} - \dot{\Omega}_{y}) \Delta_{\hat{z}} + 2g_{\hat{x}} \left[\alpha(\bar{a}_{\text{eff}}^{(d)})_{T} + \beta_{\mathbf{X}} \alpha(\bar{a}_{\text{eff}}^{(d)})_{X} + \beta_{\mathbf{Y}} \alpha(\bar{a}_{\text{eff}}^{(d)})_{Y} + \beta_{\mathbf{Z}} \alpha(\bar{a}_{\text{eff}}^{(d)})_{Z} \right] \\ &- \frac{6GM_{\oplus}R_{\oplus}^{2}}{5cr^{5}} \left(R_{\hat{x}\hat{x}}\tilde{x}^{\text{orb}} + R_{\hat{x}\hat{y}}\tilde{y}^{\text{orb}} + R_{\hat{x}\hat{z}}\tilde{z}^{\text{orb}} \right) \left[\tilde{x}^{\text{orb}} \alpha(\bar{a}_{\text{eff}}^{(d)})_{Y} - \tilde{y}^{\text{orb}} \alpha(\bar{a}_{\text{eff}}^{(d)})_{X} \right] \omega_{\tilde{z}} \\ &+ \frac{2GM_{\oplus}R_{\oplus}^{2}}{5cr^{3}} \left[\alpha(\bar{a}_{\text{eff}}^{(d)})_{Y} R_{\hat{x}\hat{x}} - \alpha(\bar{a}_{\text{eff}}^{(d)})_{X} R_{\hat{x}\hat{y}} \right] \omega_{\tilde{z}} , \end{split}$$
Mission data
SME-coeff. + technical

parameters

- Similar expressions for acceleration along y and z in the instrument frame.
- Derived from [Kostelecky & Tasson, 2011]. Cross checked independently by J. Tasson and Q. Bailey.
- Need to determine the 4 components of the differential SME vector coefficient $\alpha(\bar{a}_{eff}^{(d)})$.

$$(\bar{a}_{\text{eff}}^{(d)})_{\mu} = \frac{(\bar{a}_{\text{eff}}^{\text{Pt}})_{\mu}}{m^{\text{Pt}}c^2} - \frac{(\bar{a}_{\text{eff}}^{\text{Ti}})_{\mu}}{m^{\text{Ti}}c^2} = \sum_{w=n,p,e} \left(\frac{N_w^{\text{Pt}}}{m^{\text{Pt}}c^2} - \frac{N_w^{\text{Ti}}}{m^{\text{Ti}}c^2}\right) (\bar{a}_{\text{eff}}^w)_{\mu}$$

The SME signal in the MICROSCOPE data

Systèmes de Référence Temps-Espace

Analysis Method

- We use a MCLS method, already successfully applied to Galileo data, and simulated ACES data.
- Determine parameters from an ordinary LS fit to data.
- Determine their uncertainties and covariances by generating N synthetic data sets with same noise properties, gaps, non-stationarity, etc... and do statistics on the N sets of fitted parameters.
- Apply exactly the same analysis to temperature data, in order to obtain systematic effect on each parameter (using sensitivity coefficient given in Touboul et al. 2017).

Data

	Durée	Date de début	Pourcentage
n ⁻ session	en nombre d'orbites	et de fin	de données manquantes
210	50	2017/02/14 - 2017/02/18	$7.6 imes 10^{-4}$
218	119	2017/02/28 - 2017/03/08	2.8×10^{-4}
326	101	2017/09/27 - 2017/10/04	$3.7 imes 10^{-4}$
358	91	2017/10/14 - 2017/10/21	5.2×10^{-4}
404	119	2017/12/07 - 2017/12/15	$4.9 imes 10^{-4}$

- The data sets cover most of 2017. Allows resolution of annual modulations
- Includes differential acceleration, temperature and all auxiliary data (orbit, attitude, gravity).
- In the following session 404 will be used for illustrating the procedure.

Data

- Data gaps are extremely rare (<0.0008%) and all = 0.25 s (one missing point), identified by a (0,1) mask.
 Removing them can only affect PSD noise estimation, not the fit of the parameters. They are highly unlikely to have a significant effect on the MCLS result.
- We first remove long term drifts by fitting a polynomial of order 5. We checked that fitting it at the same time with all other parameters makes no difference.

Systèmes de Référence Temps-Espace

RTE

Comparison to independent analysis

- Session 218, same as the one analyzed by OCA/ONERA in Touboul et al., PRL 2017.
- Use a standard WEP model to compare results:

Parameter	r Value and uncertainties		PRL 2017
δ	$(4.0 \pm 9.6_{\rm stat} \pm 13.0_{\rm syst}) \times 10^{-15}$	-	$(-1\pm9_{\rm stat}\pm9_{\rm syst})\times10^{-15}$
Δ_x	$(20.2 \pm 0.04) \times 10^{-6}$	\overline{m}	$(20.1 \pm 0.1) \times 10^{-6}$
Δ_z	$(-5.77 \pm 0.04) \times 10^{-6}$	\overline{m}	$(-5.6 \pm 0.1) \times 10^{-6}$

- Only statistical uncertainties shown for the offcenterings.
- All correlation coefficients < 0.08.
- Larger systematic uncertainty might be due to OCA/ONERA having used more temperature data than just session 218 [M. Rodrigues, personal communication].

Two very different and completely independent analysis methods give same result ! ③

Final Results

Coefficient	Value and uncertainties [GeV]
$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_T$	$(6.3 \pm 12)(10)(6.0) \times 10^{-14}$
$\alpha(\bar{a}_{ ext{eff}}^{(n- ext{e-p})})_X$	$(0.81 \pm 1.7)(1.4)(0.98) \times 10^{-9}$
$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_Y$	$(0.67 \pm 3.1)(1.4)(2.7) \times 10^{-7}$
$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_Z$	$(-1.55 \pm 7.1) (3.2)(6.3) \times 10^{-7}$

- Combined analysis using all five sessions, weighted according to their individual uncertainties on WEP δ
- Uncertainties at 68% confidence
- Correlation coefficients are ≈ 0.9 between T and X components, 1 between Y and Z, and ≤ 0.02 otherwise.

As we have the full covariance matrix we can determine independent linear combinations:

SME linear combination	Value and uncertainty [GeV]
a_1	$(1.7 \pm 5.5) \times 10^{-14}$
a_2	$(0.85 \pm 1.7) \times 10^{-9}$
a_3	$(0.33 \pm 1.2) \times 10^{-9}$
a_4	$(-1.7 \pm 7.7) \times 10^{-7}$

	$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_T$	$\alpha(\bar{a}_{\mathrm{eff}}^{(\mathrm{n-e-p})})_X$	$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_Y$	$lpha(ar{a}_{ ext{eff}}^{(ext{n-e-p})})_Z$
a_1	1.0	$-6.0 \ 10^{-5}$	$4.8 \ 10^{-6}$	$2.0 10^{-6}$
a_2	$5.9 \ 10^{-5}$	0.99	0.11	0.050
a_3	$-1.3 \ 10^{-5}$	-0.12	0.91	0.39
a_4	$1.2 10^{-9}$	$-4.9 \ 10^{-5}$	-0.40	0.92

Final Results

Following SME data tables [Kostelecky and Russel] we give "maximal sensitivities", by assuming only one non-zero coefficient at a time rounding logarithmically the 2σ uncertainty.

Coefficient	Maximal sensitivity [GeV]	Prev. best [GeV]
$\alpha(\bar{a}_{\mathrm{eff}}^{(\mathrm{n-e-p})})_T$	10^{-13}	10^{-11}
$\alpha(\bar{a}_{\mathrm{eff}}^{(\mathrm{n-e-p})})_X$	10^{-8}	10^{-8}
$\alpha(\bar{a}_{\mathrm{eff}}^{(\mathrm{n-e-p})})_Y$	10^{-9}	10^{-8}
$\alpha(\bar{a}_{\text{eff}}^{(\text{n-e-p})})_Z$	10^{-8}	10^{-7}

Torsion balance – reinterpretation [1,2]

Superconducting gravimeters [3], Lunar Laser Ranging [4], Binary Pulsars [5]

Improvements by 1-2 orders of magnitude !

- [1] Schlamminger et al., PRL 2008
- [2] Kostelecky & Tasson, PRD 2011
- [3] Flowers et al., PRL 2017
- [4] Bourgoin et al., PRL 2017
- [5] Shao, Symmetry 2019

Conclusion and Outlook

- First SME analysis of Microscope data, improving on previous constraints by 1-2 orders of magnitude.
- 5 data sets spread over a year, more to come \Rightarrow expect improvement in the near future.
- Our analysis confirms independently previous results (OCA/ONERA) when using the same data and model ("standard" WEP).
- We are ready to analyze new data and compare to others.
- Our software is "versatile" i.e. any model can be easily tested
 - \Rightarrow give us your favorite model, we will test it!

