Determining the Earth's gravity field using space-borne clocks

Hu Wu, Jürgen Müller, Annike Knabe Institut für Erdmessung (IfE), Leibniz Universität Hannover, Germany

ACES workshop | October 28-29, 2019, Paris

Our Earth's gravity field

- Central gravitational field: $V = \frac{GM}{r}$
- Spherical harmonic expansion: Number of parameters: $\approx N^2$

 $V = \frac{GM}{r} + \left[\frac{GM}{R}\sum_{n=2}^{N} \left(\frac{R}{r}\right)^{n+1} \sum_{m=0}^{n} \left[\overline{C}_{nm}\cos(m\lambda) + \overline{S}_{nm}\sin(m\lambda)\right] \overline{P}_{nm}(\cos\theta)\right]$

• Spatial resolution: $D = \frac{20000}{N}$ km

eibniz

Universität Hannover

Methods to observe the global gravity field

Gravity field measurements

- gravity potential (V)
- gravity accelerations $(V_i = \nabla V = \frac{\partial V}{\partial x_i})$
- gravity gradients $(V_{ij} = \nabla^2 V = \frac{\partial^2 V}{\partial x_i \partial x_j})$

Credit: R. Rummel (1997)

Relativistic geodesy with clocks

Clocks can provide two kinds of important measurements in geodesy

- gravity potential differences
- physical height differences between distant sites

Space-to-ground clock comparison

Simulation scheme

Data input and output

Signal synthesis:

- Reference model: EIGEN-6c4, d/o 180
- Orbit: GRACE, 5 s

Noise simulation:

- Orbit error: 1.0, 1.0, 1.4 cm in X, Y, Z directions
- AOD error: AOD RL5 and RL6, d/o 100
- Clock error: white noise with different magnitudes $(10^{-16} \sim 10^{-19})$

Recovered gravity field models:

• Monthly solutions up to d/o 60 and 80

Recovered solutions

Clock error only

One-month GRACE satellite A orbit (January 2006) @ ~475 km

Recovered solutions

Clock error and AOD error

One-month GRACE satellite A orbit (January 2006) @ ~475 km

Recovered solutions

Space-to-space clock comparison

Solutions from differential measurements in space

Clock error only

One-month GRACE satellite A & B orbit (January 2006) @ ~475 km

Solutions from differential measurements in space

Clock error and AOD (RL6 – RL5)

One-month GRACE satellite A & B orbit (January 2006) @ ~475 km

Combined scenario

Solutions for the combined scenario

Clock error (10⁻¹⁸)

One-month GRACE satellite A & B orbit (January 2006) @ ~475 km

Clocks for other geodetic applications?

Height system unification

Clocks are powerful in obtaining height differences between distant points. This makes them appropriate for height system unification, by identifying:

- discrepancies (offsets) between different height datums;
- systematic distortions of national/regional levelling networks.

Mass loss in Greenland

Clocks can detect the mass loss in some areas. Being complementary to GRACE, clocks provide:

- point-wise and
- high-frequency sampling obs.

eibniz

Universität Hannover

Space geodetic reference frame

Variations of gravity potential at different altitudes

lil Leibniz ol2 Universität ol4 Hannover

Space geodetic reference frame

Gravity field above the equator at different altitudes

Space geodetic reference frame

Clocks in higher orbits support realizing a global gravity or height reference system, which is:

- stable/robust over time;
- easy to maintain.

Summary

- For gravity field determination, clocks:
 - deliver the gravity potential (difference), which is a scalar quantity and robust to attitude errors;
 - are sensitive to low-degree gravity field signals;
 - can detect the temporal signal below d/o 12 if uncertainty <10⁻¹⁸
- As further geodetic applications, clocks can:
 - unify local height systems;
 - monitor mass changes like in Greenland;
 - realize a global gravity/height reference system;

•

Open issues for future work

Doppler effects, configuration of clock networks, procedure for frequency comparison, long-term stability of clocks, ...

