Non-destructive detection of lattice trapped ⁸⁷Sr atoms in an optical clock ACES workshop 2019

B. Ximenez, W. Moreno, Y. Foucault, R. Le Targat, J. Lodewyck

Syrte

October 28, 2019

Outline:

• Overview of the Sr clocks at LNE–SYRTE

• Clock performance, accuracy budget, stability

• Detection scheme: Non-destructive detection

⁸⁷Sr lattice clock at LNE-SYRTE

- Trap depth ranging from a few E_r to 1000's E_r
- Optical lattice cavity locked and intensity controled ($\omega_0 = 50 \mu m$)
- Two ⁸⁷Sr clocks probed by a single US laser enabling studies of non-common mode systematics effect
- Comb linked to maser and atomic fountains
 primary standard

⁸⁷Sr lattice clock at LNE-SYRTE

- Atoms loaded in a 3D MOT from Zeeman–slowed atomic flux
- From the MOT, cold atoms are loaded in a 1D lattice trap
- Further control of atomic motion and state preparation

LABORATOIRE NATIONAL E MÉTROLOGIE

⁸⁷Sr lattice clock at LNE-SYRTE

Effect	Uncertainty in 10^{-18}
Black-body radiation shift	12
Quadratic Zeeman shift	5
Lattice light-shift	3
Density shift	8
Line pulling	6
Background collisions	5
Probe light	0.4
Total uncertainty	1.7 $\times 10^{-17}$

- $T_r \approx 2 \mu {\rm K}$ and $n_z \approx 0$
- Fourier limited linewidth
- $\sigma=7\times 10^{-16}/\sqrt{\tau}$
- Allows systematics study at sthe low of 10^{-17}

Effect	Uncertainty in 10^{-18}
Black-body radiation shift	12
Quadratic Zeeman shift	5
Lattice light-shift	3
Density shift	8
Line pulling	6
Background collisions	5
Probe light	0.4
Total uncertainty	1.7 $\times 10^{-17}$

- $T_r \approx 2 \mu \text{K}$ and $n_z \approx 0$
- Fourier limited linewidth
- $\sigma = 7 \times 10^{-16} / \sqrt{\tau}$
- Allows systematics study at stacked w of 10^{-17}

Cold collision shift:

Effect	Uncertainty in 10^{-18}
Black-body radiation shift	12
Quadratic Zeeman shift	5
Lattice light-shift	3
Density shift	8
Line pulling	6
Background collisions	5
Probe light	0.4
Total uncertainty	1.7 $\times 10^{-17}$

- $T_r \approx 2 \mu \text{K}$ and $n_z \approx 0$
- Fourier limited linewidth
- $\sigma = 7 \times 10^{-16} / \sqrt{\tau}$
- Allows systematics study at sthe low of 10^{-17}

Quadratic Zeeman shift:

Effect	Uncertainty in 10^{-18}
Black-body radiation shift	12
Quadratic Zeeman shift	5
Lattice light-shift	3
Density shift	8
Line pulling	6
Background collisions	5
Probe light	0.4
Total uncertainty	1.7 $\times 10^{-17}$

- $T_r \approx 2 \mu \text{K}$ and $n_z \approx 0$
- Fourier limited linewidth
- $\sigma = 7 \times 10^{-16} / \sqrt{\tau}$
- Allows systematics study at sthe low of 10^{-17}

Light shift:

Effect	Uncertainty in 10^{-18}
Black-body radiation shift	12
Quadratic Zeeman shift	5
Lattice light-shift	3
Density shift	8
Line pulling	6
Background collisions	5
Probe light	0.4
Total uncertainty	1.7 $\times 10^{-17}$

- $T_r \approx 2 \mu \text{K}$ and $n_z \approx 0$
- Fourier limited linewidth
- $\sigma = 7 \times 10^{-16} / \sqrt{\tau}$
- Allows systematics study at standard of 10^{-17}

Clock performance – local and international comparisons

- Regularly comparing clocks with fairly automated instrumentation
- Enables fixing technical problems affecting the clock at the $10^{-17}\,$ range
- Robustness of instrumentation leading to high uptime $\approx 60-90\%$

TAI contribution

• First optical clock contribution to TAI (thanks, Michel Abgrall):

- First real time contribution Dec/2018: 10 days clock operation together with NICT
- SYRTE–Sr × NICT–Sr at 1^{-16} level via GPS-IPPP
- Other contributions for TAI: NIST-Sr, NIST-Yb

Clock performance – local and international comparisons

- Fiber links between SYRTE, NPL and PTB: remote comparison of optical clocks
- Regular comparison campaigns since 2015

SYRTE

Detection scheme: non-destructive detection

- Fluorescence-based detection
- Lost of atoms: need to reload the trap

Detection scheme: non-destructive detection

- Off resonance 461 nm blue probe phase modulated
- Coupled in the lattice cavity simultaneously with 813 nm
- Lock the cavity and measure the phase shift due to the atoms

Detection scheme: non-destructive detection

- Detection resolution: $\delta N = 3.7$ atoms
- Scattering of 38 photons per atom
- Shot noise limit: δN ≈0.7 Allows for recycling the atoms for the next interrogation

Detection scheme: non-destructive detection, next steps

 Detection noise usually fundamentally limited by projection noise (projective measurements)

$$\delta \mathsf{N}_{QPN} \approx \sqrt{N}$$

- Overcome QPN: spin squeeze
- Reduced blue probe intensity by using 3rd and 4th side bands

Conclusions

- Robust clock operation: able to run the clock for weeks on demand
- Stability at the high 10^{-16} at 1 s, allowing for frequency resolution in the low 10^{-17} and systematics control at the same level
- Remote comparisons and TAI contributions
- Non-destructive detection, Dick effect reduction
- Moving towards quantum regime, spin squeeze to overcome QPN

Acknowledgements:

- Sr clock team at SYRTE: J. Lodewyck, R. Le Targat, Y. Foucault, W. Moreno and (former member) G. Vallet
- Comb team at SYRTE: R. Le Targat, H. Alvarez–Martinez, C. Baerentsen
- Hg clock team at SYRTE: S. Bize, M. Andia, V. Cambier, C. G. Changlei

Thank you very much !

